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Abstract. We show how Fermi liquid theory results can be systematically recovered using a renormalization
group (RG) approach. Considering a two-dimensional system with a circular Fermi surface, we derive RG
equations at one-loop order for the two-particle vertex function Γ in the limit of small momentum (Q) and
energy (Ω) transfer and obtain the equation which determines the collective modes of a Fermi liquid. The
density-density response function is also calculated. The Landau function (or, equivalently, the Landau
parameters F sl and F al ) is determined by the fixed point value of the Ω-limit of the two-particle vertex
function (ΓΩ

∗
). We show how the results obtained at one-loop order can be extended to all orders in

a loop expansion. Calculating the quasi-particle life-time and renormalization factor at two-loop order,
we reproduce the results obtained from two-dimensional bosonization or Ward Identities. We discuss the
zero-temperature limit of the RG equations and the difference between the Field Theory and the Kadanoff-
Wilson formulations of the RG. We point out the importance of n-body (n ≥ 3) interactions in the latter.

PACS. 05.30.Fk Fermion systems and electron gas – 71.10.Ay Fermi-liquid theory and other
phenomenological models – 71.10.Ca Electron gas, Fermi gas

1 Introduction

Since the original work of Landau [1–4], the Fermi liquid
theory (FLT) is one of the main basis of our understand-
ing of interacting fermions. The discovery of new mate-
rials showing strong deviations with respect to FLT, like
high-Tc superconductors, has revived interest in the mi-
croscopic derivation of Landau’s theory. In particular, this
has motivated the application of RG methods to interact-
ing fermions in dimension d ≥ 2 [5–13].

RG methods are well-known for one-dimensional in-
teracting fermions [14,15]. In these systems, the low-
order perturbation theory is characterized by two logarith-
mically singular and interfering channels of correlation,
namely, the particle-particle (Cooper) and 2kF particle-
hole (Peierls) channels. This invalidates any RPA-like ap-
proach which implicitly assumes the independence of the
channels to lowest order. The RG approach allows one to
sum up the leading, next-to-leading... logarithmic singu-
larities in a consistent way. It has been also successfully
applied to quasi-one-dimensional conductors (i.e. weakly
coupled chains systems) where the interchain coupling can
lead either to a Fermi liquid behavior or to a state of bro-
ken symmetry [15,16]. RG methods have also been used
to study the instabilities of isotropic two-dimensional sys-
tems with respect to superconductivity or charge (spin)
density wave [17]. While the independence of various chan-
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nels of correlation is in general expected to be a good
approximation (therefore allowing an RPA approach), for
particular Fermi surfaces the situation can become more
complicated due to the presence of nesting, Van Hove sin-
gularities... In such cases, the RG can be a useful tool to
study the instabilities of the system and to investigate in
detail phenomena like superconductivity induced by ex-
change of spin fluctuations.

In the above mentioned examples, one focuses on
“highly quantum” degrees of freedom corresponding to
energies larger than the temperature. The perturbation
theory is characterized in general by logarithmic singular-
ities of the type ln(E0/T ) (E0 being an ultra-violet cut-
off), which clearly shows that the temperature plays the
role of an infrared cut-off. This should be contrasted with
the standard diagrammatic derivation of FLT [2–4] (which
in the following is referred to as the microscopic FLT)
where these “quantum” degrees of freedom are in general
not considered explicitly but simply included in the defini-
tion of some regular low-energy effective interactions. FLT
concentrates on the Landau (or zero-sound (ZS)) channel
(particle-hole pairs at small total momentum and energy)
where the important degrees of freedom are known to be
within the thermal broadening of the Fermi surface. This
latter property can be seen from the polarization diagram
(or particle-hole bubble) which is proportional to ∂nF /∂ε
to lowest order in perturbation theory (nF (ε) is the Fermi
occupation factor). Thus the role of temperature is to fix
the typical energy scale rather than to provide an infrared
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cut-off. This makes the application of RG methods in that
case somewhat different from the above mentioned cases.

The first attempt to recover (in detail) Landau’s the-
ory from a RG method is due to Shankar [5,7]. However,
Shankar’s discussion of FLT rather relies on usual per-
turbative theory than on RG approach. Although RG ar-
guments were used to identify the relevant couplings, the
low-energy effective degrees of freedom were indeed explic-
itly integrated out by means of standard diagrammatic
calculations. Using a finite temperature formalism, Chi-
tov and Sénéchal have shown how FLT can be understood
from a RG approach. In particular, they have correctly
analyzed (within the RG framework) the singularities of
the Landau channel which are at the heart of the micro-
scopic FLT. Chitov and Sénéchal’s analysis has recently
been further developed and a detailed connection between
the microscopic FLT and the RG approach has emerged
[10].

The aim of this paper is to show how FLT results can
be systematically derived in a RG approach. On the one
hand we derive in detail the results reported in reference
[10]. On the other hand, we present new results and discuss
at length some particular points concerning the applica-
tion of RG methods to interacting fermions. In the next
section, we recall some aspects of FLT. Our aim is not to
give an exhaustive summary of FLT, but to mention the
main ideas underlying the microscopic FLT while empha-
sizing some points which will turn out to be crucial in the
RG approach, such as the singularity of the two-particle
vertex function at small momentum and energy transfer
or its symmetry properties. In Section 3, we derive the
RG equations at one-loop order for the Q-limit (ΓQ) and
Ω-limit (ΓΩ) of the forward scattering vertex. In order to
satisfy the Fermi statistics, the forward scattering zero-
sound (ZS) and exchange (ZS′) are both taken into ac-
count. As a result, we find that both the flows of ΓQ and
ΓΩ are non zero. We show that the antisymmetry of ΓQ

under exchange of the two incoming or outgoing particles
is conserved under RG, while the antisymmetry of ΓΩ is
lost. We solve (approximately) the RG equations to obtain

a relation between the fixed point values ΓQ
∗

and ΓΩ
∗
.

We then extend the RG equations to the case of finite
momentum and energy transfers and obtain the equation
determining the collective modes of a Fermi liquid. The
standard results of FLT are recovered if one identifies the
Landau parameters F sl , F al with ΓΩ

∗
. We calculate the

density-density correlation function and discuss the zero
temperature limit of the RG equations. In Section 4, we
discuss in detail some subtle points concerning the im-
plementation of RG methods to interacting fermions. We
point out the importance of three-, four-, ... -body interac-
tions in the Kadanoff-Wilson (KW) formulation of the RG
and discuss the differences between this approach and the
Field Theory (FT) approach. In Section 5, we show how
the results obtained at one-loop order can be extended to
all orders. The quasi-particle life-time and renormalization
factor are explicitly calculated at two-loop order in Sec-
tion 6. The scattering rate is found to be τ−1 ∼ T 2 lnT , a
result previously known for a two-dimensional Fermi liq-

uid. The expression for the renormalization factor agrees
with the one obtained from two-dimensional bosonization
or Ward Identities. We only consider in this paper the case
of a neutral system with short range interactions.

2 Some aspects of Fermi liquid theory

2.1 Phenomenological approach

Landau’s first approach to Fermi liquids is phenomeno-
logical [1,3,4]. The main assumption is the existence of
low-energy elementary excitations (quasi-particles) which
can be put in a one-to-one correspondence with the ele-
mentary excitations (“particles” and “holes”) of the non-
interacting fermion gas. Landau further postulated that
a weak perturbation applied to the system in its ground
state induces a change of the total energy given by (from
now on we consider spin one-half fermions)

δE =
∑
K,σ

ε0KδnKσ

+
1

2ν

∑
K,K′,σ,σ′

fσ,σ′(K,K′)δnKσδnK′σ′ +O(δn3) ,

(1)

where δnKσ is the change in the occupation number of
the quasi-particles of momentum K and spin σ, and ν the
volume of the system. ε0K is the energy of a quasi-particle
in the absence of other excited quasi-particles. For states
near the Fermi surface and in an isotropic liquid (the only
case we shall consider in this paper), it can be written
as ε0K = vF (K −KF ) + µ where KF is the Fermi wave-
vector, vF the Fermi velocity of the quasi-particles and µ
the chemical potential (we set ~ = kB = 1 throughout the
paper). The effective mass is defined by m = KF /vF . The
second term of the rhs of (1) comes from the interaction
between quasi-particles. For states very close to the Fermi
surface, K ' KF and K ′ ' KF , the Landau function
fσ,σ′ is a function of the angle between K and K′. If the
spin dependent part of the quasi-particle interaction is due
purely to exchange, fσ,σ′ can be written as

fσ,σ′(θ) = fs(θ) + fa(θ)σσ′

=
1

2N(0)

∞∑
l=0

(F sl + F al σσ
′)Pl(cos θ) , (2)

where N(0) = K2
F/2π

2vF is the density of states per spin
at the Fermi level and σ = 1 (−1) for up (down) spins.
In the last line of (2), we have expanded fs(θ) and fa(θ)
on the basis of Legendre polynomials Pl(cos θ). Using (1)
and a transport equation for the distribution function of
the quasi-particles, one can relate the physical quantities
to the Landau parameters F sl and F al [18]. For example,
one obtains for the specific heat and the Pauli suscepti-

bility, C = C0(1 +
F s1
3 ) and χP = χ0

P /(1 + F a0 ), where
C0 and χ0

P denote the corresponding quantities in a free
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Fig. 1. Lowest order (one-loop) corrections to the two particle
vertex function Γ . We use the simplified notation 1 = K̃1,
1 +Q = K̃1 + Q̃...

fermion gas. Equation (1) holds only when the spin pro-
jection of the quasi-particles along a given axis is a good
quantum number. In a more general case, ε0 and δn should
be considered as matrices in the spin variables. The Lan-
dau function then becomes a function fσi ≡ fσ1σ2,σ3σ4 of
four spin variables. In the following, we shall use fσi rather
than fσ,σ′ .

2.2 Microscopic approach

2.2.1 Bethe-Salpeter equation in the ZS channel

The foundations of FLT were rapidly established using
field theoretical methods [2–4]. The key microscopic quan-
tity is the two-particle vertex function, which, together
with the one-particle propagator G, plays an essential role
in the theory of the Fermi liquid. We denote this quan-
tity by Γσi(K̃1, K̃2; K̃2 − Q̃, K̃1 + Q̃) ≡ Γσi(K̃1, K̃2; Q̃)

with Γσi ≡ Γσ1σ2,σ3σ4 . Here K̃ = (K, ω) where K is
a three-component vector and ω = πT (2n + 1) (n inte-
ger) a fermionic Matsubara frequency. Q is the momen-
tum transfer between the two particles and the bosonic
Matsubara frequency Ω = 2πTm (m integer) the energy
transfer. Landau noted that among the three lowest order
corrections for Γ shown in Figure 1 (one-loop corrections),

the ZS graph plays a special role when Q̃→ 0 (and T →
0) since the product G(K̃)G(K̃ + Q̃) becomes singular in
this limit if one assumes a quasi-particle form for the one-
particle propagator, i.e. G(K̃) = z[iω − vF (K −KF )]−1

where z is the quasi-particle renormalization factor. (We

do not consider the incoherent part Ginc(K̃) which can
easily be taken into account.) This motivated Landau to
organize the perturbation expansion of Γ as follows [2–4].

One first introduces the quantity Γ̃ defined as the sum
of all diagrams which do not contain the singular prod-
uct G(K̃)G(K̃ + Q̃). The exact two-particle vertex func-
tion is then determined by the following Bethe-Salpeter

equation:

Γσi(K̃1, K̃2; Q̃) = Γ̃σi(K̃1, K̃2; Q̃)

+
T

ν

∑
σ,σ′,K̃

Γ̃σ1σ′,σσ4(K̃1, K̃; Q̃)

×G(K̃)G(K̃ + Q̃)Γσσ2,σ3σ′(K̃, K̃2; Q̃) . (3)

Equation (3) determines Γ as a function of the irreducible
(with respect to the ZS channel) two-particle vertex func-

tion Γ̃ . In order to simplify it, we use the two following
properties: i) Γ̃ is a non-singular function of Q̃ (this is
explicitly verified at one-loop order). This allows us to ne-

glect its Q̃-dependence at small Q̃. ii) The singularity of

G(K̃)G(K̃+Q̃) comes from K̃ in the vicinity of the Fermi
surface. In this area, the K,ω-dependence of the Γ ’s in (3)
can be neglected so that the energy and radial momentum
integral can be done [19]. Note that this amounts to de-
coupling the ZS channel from the other channels. Using
(i) and (ii), (3) transforms into (for T → 0)

Γσi(K̃1, K̃2; Q̃) = Γ̃σi(K̃1, K̃2)

+ z2N(0)
∑
σ,σ′

∫
dΩK̂

4π
Γ̃σ1σ′,σσ4(K̃1, K̃)

× Γσσ2,σ3σ′(K̃, K̃2; Q̃)
vF K̂ ·Q

iΩ − vF K̂ ·Q
, (4)

where K̂ = K/K is a unit vector and dΩK̂ the corre-
sponding angular integration. Equation (4) is the basis of
the microscopic derivation of FLT. Before solving it (Sect.
2.2.3), we discuss in the next section the importance of the
ZS′ channel with respect to the Fermi statistics.

2.2.2 Symmetry considerations

As pointed out by Mermin [20,21] (see also Ref. [12]), the
ZS′ graph also becomes singular in the limit K1−K2 → 0
since it contains the product G(K̃)G(K̃+K̃2−K̃1−Q̃)→
G(K̃)G(K̃ − Q̃). It is therefore necessary in this case (at
least in principle) to consider the ZS and ZS′ channels
on the same footing and to add to the rhs of (4) the term

−
T

ν

∑
σ,σ′

∑
K̃

Γ̃σ1σ′,σσ3(K̃1, K̃ + K̃2 − K̃1; K̃2 − K̃1 − Q̃)

×G(K̃)G(K̃ + K̃2 − K̃1 − Q̃)

× Γσσ2,σ4σ′(K̃, K̃2; K̃2 − K̃1 − Q̃)

'− z2N(0)
∑
σ,σ′

∫
dΩK̂

4π
Γ̃σ1σ′,σσ3(K̃1, K̃)

× Γσσ2,σ4σ′(K̃, K̃2; K̃2 − K̃1 − Q̃)

×
vF K̂ · (K2 −K1 −Q)

−iΩ − vF K̂ · (K2 −K1 −Q)
, (5)

where the second line is obtained in the limit Q → 0
and |K2 −K1| � T/vF (and T → 0). Note that the ZS
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graph alone does not satisfy the Fermi statistics [12,20,
21]. Indeed, if one exchanges the two incoming or outgoing
lines, the ZS graph transforms into the ZS′ graph and
vice versa. The consideration of the ZS′ graph when K1−
K2 → 0 ensures that the antisymmetry properties of the
vertex function are satisfied. From (4, 5), we obtain

Γσ1σ1,σ2σ3(K̃1, K̃1; Q̃) = 0 for Q 6= 0 and Ω 6= 0 . (6)

Since the value of Γσi(K̃1, K̃2; Q̃) for Q̃ → 0 depends in
an essential way on the ratio Q/Ω (as can be seen from
(4, 5)), we introduce the Q- and Ω-limits of the two-
particle vertex function:

ΓQσi(K̃1, K̃2) = lim
Q→0

[
Γσi(K̃1, K̃2; Q̃)

∣∣∣
Ω=0

]
,

ΓΩσi (K̃1, K̃2) = lim
Ω→0

[
Γσi(K̃1, K̃2; Q̃)

∣∣∣
Q=0

]
. (7)

The limit Q̃ → 0 in (6) is still ill-defined since the limits

K1−K2, Q̃→ 0 do not commute in (5). Following Mermin

[20,21], we first take the limit Q̃→ 0 (with either Q/Ω →
0 or Ω/Q → 0) and then K1 − K2 → 0: this ensures
that ΓQ and ΓΩ are continuous functions in the forward
direction (K1 = K2). (Since ΓQ and ΓΩ are ultimately
connected to the (physical) forward scattering amplitude
of two particles on the Fermi surface and to the Landau
function fσi , respectively, this requirement of continuity
in the forward direction is very natural.) From (4, 5) we
then conclude that the Q-limit of the forward scattering
vertex function (ΓQ) satisfies the Pauli principle while the
Ω-limit (ΓΩ) does not, i.e.

ΓQσ1σ1,σ2σ3
(K̃1, K̃1) = 0 ,

ΓΩσ1σ1,σ2σ3
(K̃1, K̃1) 6= 0 . (8)

2.2.3 Landau’s solution

We first consider the functions ΓQ,Ωσi
(K̃1, K̃2) and restrict

ourselves to states on the Fermi surface (ω = 0 and
K = KF ). ΓQ,Ωσi (θ) become functions of the angle θ be-
tween K1 and K2, and can be expanded on the basis
of Legendre polynomials (with coefficients ΓQ,Ωσi

(l)). The
usual diagrammatic derivation of FLT does not take into
account the singularity which appears for Q̃ → 0 in the
ZS′ channel when |K1 −K2| � T/vF . This can be justi-
fied as follows. In general, physical quantities probe all the
possible values of the angle θ. For example, the compress-
ibility and the Pauli susceptibility are entirely determined
by ΓQσi(l = 0). The singularity in the ZS′ channel affects
only small angles |θ| � T/EF (where EF ∼ vFKF is the
Fermi energy), while the singularity in the ZS channel af-
fects all the angles. ΓQσi(l) is therefore determined by (4)
with an accuracy of order T/EF for any reasonable value
of l (l� EF /T ).

When (5) is not taken into account, Γ̃ = ΓΩ and (4)
becomes

ΓQσi(l) = ΓΩσi(l)−
z2N(0)

2l+ 1

∑
σ,σ′

ΓΩσ1σ′,σσ4
(l)ΓQσσ2,σ3σ′

(l) .

(9)

If the spin dependent part of the interaction is due purely
to exchange, one can write ΓQ,Ωσi

as a function of a spin

symmetric (AQ,Ω) and antisymmetric (BQ,Ω) part:

2N(0)z2ΓQ,Ωσi
(l) = AQ,Ω(l)δσ1,σ4δσ2,σ3

+BQ,Ω(l)τσ1σ4 · τσ2σ3 , (10)

where τ denotes the Pauli matrices. We then obtain
from (9)

AQl =
AΩl

1 +
AΩl

2l+1

; BQl =
BΩl

1 +
BΩl
2l+1

· (11)

Equation (4) can also be used to obtain the collective
modes (which correspond to poles in the retarded vertex

function) and any response function at finite Q̃. One then
recovers the results of the phenomenological approach if
one defines the Landau parameters by F sl = AΩl and
F al = BΩl , or equivalently

fσi(θ) = z2ΓΩσi(θ) . (12)

Thus the microscopic FLT not only justifies the results
obtained in the phenomenological approach but also pro-
vides a microscopic definition of the Landau parameters.
It is important to note that the Landau parameters do
not correspond to a quantity entering the microscopic ac-
tion or some low-energy effective action: it is necessary
to integrate all the degrees of freedom to obtain ΓΩσi and
therefore the Landau parameters. Generally, one does not
try to calculate ΓΩσi as a function of the microscopic pa-
rameters but only establishes the relation between this
quantity and physical quantities which can be measured
experimentally.

3 RG equations at one-loop order

From now on we restrict ourselves to a two-dimensional
system since our discussion can be straightforwardly ex-
tended to the three-dimensional case. We consider inter-
acting spin one-half fermions with a circular Fermi surface.
We write the partition function Z as a functional integral
over Grassmann variables,

Z =

∫
Dψ∗Dψe−S , (13)

where, assuming that the high-energy degrees of freedom
have been integrated out (in a functional sense), S is a low-
energy effective action describing the fermionic degrees of
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freedom with |K−KF | < Λ0 � KF . We write the effective
action as

S = −
∑
K̃,σ

ψ∗σ(K̃)(iω − ε(K))ψσ(K̃)

+
1

4βν

∑
K̃1...K̃4

∑
σ1...σ4

Uσ1σ2,σ3σ4(K1,K2,K3,K4)

× ψ∗σ4
(K̃4)ψ∗σ3

(K̃3)ψσ2(K̃2)ψσ1(K̃1)

× δK1+K2,K3+K4δω1+ω2,ω3+ω4 , (14)

where the wave-vectors K satisfy |K − KF | < Λ0. β =

1/T is the inverse temperature and ν and K̃ have the
same meaning as in Section 2. Ignoring irrelevant terms,
we write the single particle energy as ε(K) = vF (K −
KF ) ≡ vFk (choosing the chemical potential as the origin
of the energies). The summation over the wave-vectors is
defined by

1

ν

∑
K

=

∫
d2K

(2π)2
≡ KF

∫ Λ0

−Λ0

dk

2π

∫ 2π

0

dθ

2π
, (15)

ignoring irrelevant terms at tree-level. The coupling func-
tion Uσ1σ2,σ3σ4(K1,K2,K3,K4) is antisymmetric with re-
spect to exchange of the two incoming or outgoing parti-
cles,

Uσ1σ2,σ3σ4(K1,K2,K3,K4)

= −Uσ2σ1,σ3σ4(K2,K1,K3,K4)

= −Uσ1σ2,σ4σ3(K1,K2,K4,K3) , (16)

and is assumed to be a non-singular function of its argu-
ments.

The form of the action (14) is usually justified by argu-
ing that the omitted terms are irrelevant according to tree-
level analysis [7,8]. This is not entirely correct. The inte-
gration of high-energy modes (|k| > Λ0) generates terms of
order n ≥ 6 in the ψ(∗) fields (i.e. three-, four-... -body in-
teractions) which are marginal although a naive tree-level
analysis would predict them to be irrelevant. The RG ap-
proach for the low-energy modes (|k| < Λ0) also produces
such terms. The role of these terms will be mentioned be-
low and discussed in detail in Section 4. Nevertheless, the
form (14) of the action is sufficient for the purpose of this
section. Moreover, the possibility to assume that Uσi is a
regular function of K1,K2... and to ignore its dependence
on the Matsubara frequencies ω1, ω2... (which is irrelevant
at tree-level) is not obvious. Indeed, according to the re-
sults of the microscopic FLT, we expect Uσi to acquire
singularities for small momentum and energy transfers.
As will be shown below, these singularities arise in the
renormalization process when the momentum cut-off be-
comes smaller than T/vF so that they can be ignored in
the (bare) effective action (14) if we choose T � vFΛ0.
Note also that the integration of high-energy degrees of
freedom generates a wave-function renormalization factor
zΛ0 < 1 which has been eliminated from (14) via a rescal-
ing of the fermion fields. The ψ(∗)’s in (14) therefore do

not correspond to the bare fermions but to quasi-particles
with a renormalization factor zΛ0 [4].

As shown in reference [7], the constraint to have all
momenta in the shell |k| < Λ0 restricts the allowed scatter-
ings to diffusion of particle-hole, or particle-particle, pairs
with small total momentum (Q . Λ0). Consequently, only
two coupling functions Uσi have to be considered: the
forward scattering coupling function and the BCS cou-
pling function. In the following, we neglect the latter by
assuming it is irrelevant so that no BCS instability oc-
curs. As in Section 2, the forward scattering coupling
function is denoted by Γσi(K̃1, K̃2; Q̃). According to tree-
level analysis, this quantity is marginal and its dependence
on k1,2 and ω1,2 is irrelevant. We therefore introduce the

coupling function Γσi(θ1, θ2; Q̃) = Γσi(K
F
1 ,K

F
2 ; Q̃) where

KF = KF (cos θ, sin θ) is a wave-vector on the Fermi sur-

face. It is not possible to put Q̃ = 0 in Γ (although the

dependence on Q̃ is irrelevant at tree-level) because Γ will

acquire a singular dependence on Q̃ in the process of renor-
malization (this point is further discussed at the end of
Sect. 3.1). We decompose Γ into a spin triplet amplitude
Γt and a spin singlet amplitude Γs [22,23]:

Γσi(θ1, θ2; Q̃) = Γt(θ1, θ2; Q̃)Iσ1σ2
σ3σ4

+ Γs(θ1, θ2; Q̃)T σ1σ2
σ3σ4

,

(17)

where the functions

Iσ1σ2
σ3σ4

=
1

2
(δσ1,σ4δσ2,σ3 + δσ1,σ3δσ2,σ4) ,

T σ1σ2
σ3σ4

=
1

2
(δσ1,σ4δσ2,σ3 − δσ1,σ3δσ2,σ4) (18)

satisfy the relations

Iσ1σ2
σ3σ4

= Iσ2σ1
σ3σ4

= Iσ1σ2
σ4σ3

,

T σ1σ2
σ3σ4

= −T σ2σ1
σ3σ4

= −T σ1σ2
σ4σ3

,

and

Iσ1σ
σ3σ′

Iσ
′σ2

σσ4
=

5

4
Iσ1σ2
σ3σ4

−
3

4
T σ1σ2
σ3σ4

,

Iσ1σ
σ3σ′

T σ
′σ2

σσ4
= −

1

4
Iσ1σ2
σ3σ4

+
3

4
T σ1σ2
σ3σ4

,

T σ1σ
σ3σ′

T σ
′σ2

σσ4
=

1

4
Iσ1σ2
σ3σ4

+
1

4
T σ1σ2
σ3σ4

, (19)

where a sum over σ and σ′ is implied.
The KW RG procedure consists in successive partial

integrations of the fermion field degrees of freedom in the
infinitesimal momentum shell Λ0e

−dt ≤ |k| ≤ Λ0 where
dt is the RG generator and Λ(t) = Λ0e

−t the effective
momentum cut-off at step t . Each partial integration is
followed by a rescaling of radial momenta, frequencies and

fields (i.e. ω′ = sω, k′ = sk and ψ(∗)′ = ψ(∗) with s = edt)
in order to let the quadratic part of the action (14) in-
variant and to restore the initial value of the cut-off. (See
Refs. [7,15] for a detailed presentation of the KW RG
method applied to fermion systems.) The partial integra-
tion, which is evaluated perturbatively within the frame-
work of a loop expansion, modifies the parameters of the
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action which become functions of the flow parameter t.
It also generates higher order interactions (three-, four-...
body interactions) whose relevance or irrelevance should
be controlled (see Sect. 4) [15].

At one-loop order, the three diagrams which have to
be considered for the renormalization of Γσi(θ1, θ2; Q̃) are
shown in Figure 1. In these diagrams, the momenta of the
internal lines should be in the infinitesimal shell which is
integrated out.

3.1 RG equations for ΓQ
σi

and ΓΩσi

We first consider the RG equations for the Q- and Ω-limits
of the forward scattering coupling function:

ΓQσi(θ1 − θ2) = lim
Q→0

[
Γσi(θ1, θ2; Q̃)

∣∣∣
Ω=0

]
,

ΓΩσi(θ1 − θ2) = lim
Ω→0

[
Γσi(θ1, θ2; Q̃)

∣∣∣
Q=0

]
, (20)

since these two quantities play an important role in the
microscopic FLT. ΓQ,Ωσi

(θ) are even functions of θ. The
only remnant of the antisymmetry of Uσi (Eq. (16)) is the
condition [8]

ΓQt (θ = 0)|Λ(t)=Λ0
= ΓΩt (θ = 0)|Λ(t)=Λ0

= 0 , (21)

using the fact that Uσi is assumed to be a regular function
of its arguments.

We ignore the symmetry-preserving contribution of the
BCS channel (see however Sect. 4.3) and first discuss the
contribution of the ZS graph. This graph involves the
quantity

T
∑
ω

G(K̃)G(K̃ + Q̃)

=
1

2

tanh
[
β
2 ε(K + Q)

]
− tanh

[
β
2 ε(K)

]
iΩ + ε(K)− ε(K + Q)

'
vF K̂ ·Q

iΩ − vF K̂ ·Q

β

4 cosh2(βvF k/2)
(22)

for small Q. Here G(K̃) = (iω−vFk)−1 is the one-particle
Green’s function and |k| = Λ(t). It is clear that the limit

of (22) for Q̃ → 0 depends on the ratio Q/Ω. It equals
−(β/4) cosh−2(βvF k/2) in the Q-limit while it vanishes
in the Ω-limit. We obtain

dΓQσi(θ1−θ2)

dt

∣∣∣∣∣
ZS

=−
N(0)βR

cosh2(βR)

∫
dθ

2π

∑
σ,σ′

ΓQσ1σ′,σσ4
(θ1−θ)

× ΓQσσ2,σ3σ′
(θ − θ2) ,

dΓΩσi (θ1 − θ2)

dt

∣∣∣∣∣
ZS

= 0 ,

(23)

a result which was first obtained in reference [8]. Here
βR = vFβΛ(t)/2 is a dimensionless inverse temperature

and N(0) = KF /2πvF the density of states per spin. Note
that we have obtained (23) without rescaling the radial
momenta, frequencies and fields. However, the same re-
sult is obtained if one chooses to do this rescaling. In
this case, T should be replaced by T (t) = Tet (this
t-dependence follows from the rescaling of the Matsub-
ara frequencies) and |k| = Λ0 in (22), which leads to
(23) with βR = vFβ(t)Λ0/2 (which can be also written
βR = vFβΛ(t)/2 with Λ(t) = Λ0e

−t). Since the two pro-
cedures (with or without rescaling) are equivalent, we will
in general use β = 1/T and Λ(t) = Λ0e

−t which amounts
to keeping the original units for the frequencies and mo-
menta. Equations (23) show that we recover two impor-
tant results of the microscopic FLT: i) the contribution of

the ZS graph for Q̃→ 0 strongly depends on the order of
the limits Q→ 0 and Ω → 0; ii) this singularity at Q̃→ 0
comes from the integration of states near the Fermi sur-
face (Λ(t) . T/vF ) since βR/ cosh2(βR)� 1 for βR � 1.
Since limβ→∞(β/4) cosh−2(βx/2) = δ(x), the ZS graph
gives a singular contribution (with respect to Λ(t)) to the
RG flow of ΓQ when T → 0.

The ZS′ graph involves the quantity

T
∑
ω

G(K̃)G(K̃ + KF
21 − Q̃)

=
1

2

tanh
[
β
2 ε(K + KF

21 −Q)
]
− tanh

[
β
2 ε(K)

]
−iΩ + ε(K)− ε(K + KF

21 −Q)
, (24)

where KF
21 = KF

2 −KF
1 . Since both internal lines should

have their momenta in the infinitesimal shell near the cut-
off Λ(t), the ZS′ graph is non zero in the limit Q→ 0 only
if KF

21 → 0. We therefore obtain a (non-physical) discon-
tinuity in the forward direction (θ = 0). As discussed in
Section 4, it is necessary to consider three-body interac-
tions between fermions to restore the continuity in the
forward direction. The ZS′ graph with KF

21 6= 0 is then
generated from the three-particle vertex function. To cal-
culate the ZS′ graph for small but finite |K21|, we adopt
in this section the following approximate procedure which
is justified in Section 4. We impose K to be at the cut-off
but relax the constraint to have K + KF

21 −Q at the cut-
off. For small KF

21 (i.e. for |θ1 − θ2| � T/EF ) and small
Q, (24) becomes

vF K̂ · (KF
21 −Q)

−iΩ − vF K̂ · (KF
21 −Q)

β

4 cosh2(βvF k/2)
· (25)

It is clear from this expression that the limits Q̃,KF
21 → 0

do not commute. The same problem arises in the mi-
croscopic FLT as pointed out by Mermin [12,20,21] and
briefly discussed in Section 2. In agreement with the pro-
cedure followed in the microscopic FLT, we first take the
limit Q̃→ 0 (which is well defined for KF

21 6= 0) and then
θ1− θ2 → 0. This procedure (together with the considera-
tion of three-body interactions) ensures the continuity of
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ΓQ,Ω(θ) in the forward direction. We have

lim
θ1−θ2→0

[
T
∑
ω

G(K̃)G(K̃ + KF
21 − Q̃)

∣∣∣
Q̃=0

]
= −

β

4 cosh2(βvF k/2)
· (26)

At low temperature, the ZS′ graph also gives a singular
contribution (with respect to Λ(t)) to the flows of ΓQ and
ΓΩ when θ1− θ2 → 0. The singularity in the ZS′ channel
is restricted to the angles |θ1−θ2| � T/EF . For |θ1−θ2| �
T/EF , the ZS′ channel gives a smooth contribution to the
flow of ΓQ,Ω. Note also that as in the microscopic FLT
the ZS′ graph does not differentiate between ΓQ and ΓΩ

contrary to the ZS graph.
Taking into account the spin dependence of the cou-

pling functions (using (19)), we obtain that the contri-
butions of the ZS and ZS′ graphs to the RG flow of
ΓQt (θ = 0) cancel each other:

dΓQt (θ = 0)

dt

∣∣∣∣∣
ZS′

= −
dΓQt (θ = 0)

dt

∣∣∣∣∣
ZS

. (27)

Consequently, we have ΓQt (θ = 0) = 0 for any value of the
flow parameter t. The antisymmetry of ΓQ is therefore
conserved under RG. On the other hand, since the con-
tribution of the ZS graph to the flow of ΓΩ(θ = 0) van-
ishes, while the contribution of the ZS′ graph does not,
the antisymmetry of ΓΩ is not conserved under RG. The
symmetry properties of the two-particle vertex function
agree with the results of the microscopic FLT (Eqs. (8)).
The antisymmetry of ΓΩ is lost only when Λ(t) . T/vF .
For Λ(t) � T/vF , the RG flow is determined by the ZS′

channel only and ΓQ(θ) ' ΓΩ(θ).
Taking into account both the contributions of the ZS

and ZS′ graphs, the RG equations of ΓQ,Ω can be written
as

dΓQσi
dt

=
dΓQσi
dt

∣∣∣∣∣
ZS

+
dΓQσi
dt

∣∣∣∣∣
ZS′

,

dΓΩσi
dt

=
dΓΩσi
dt

∣∣∣∣∣
ZS′

=
dΓQσi
dt

∣∣∣∣∣
ZS′

. (28)

The two preceding equations can be combined (using also
(23)) to obtain an equation relating ΓQ and ΓΩ:

dΓQσi(θ1 − θ2)

dt
=
dΓΩσi (θ1 − θ2)

dt
−

N(0)βR

cosh2(βR)

×

∫
dθ

2π

∑
σ,σ′

ΓQσ1σ′,σσ4
(θ1 − θ)Γ

Q
σσ2,σ3σ′

(θ − θ2) . (29)

Introducing the Fourier transforms

ΓQ,Ωσi (l) =

∫
dθ

2π
e−ilθΓQ,Ωσi (θ) , (30)

and performing the sum over spins using (19), we obtain

dΓQt (l)

dt
= −

N(0)βR

cosh2(βR)

[
5

4
ΓQt (l)

2

+
1

2
ΓQt (l)ΓQs (l) +

1

4
ΓQs (l)

2

]
+
dΓΩt (l)

dt
,

dΓQs (l)

dt
= −

N(0)βR

cosh2(βR)

[
3

4
ΓQt (l)

2

+
3

2
ΓQt (l)ΓQs (l)−

1

4
ΓQs (l)

2

]
+
dΓΩs (l)

dt
· (31)

These equations agree with those of Chitov and Sénéchal
apart from the terms dΓΩt,s/dt coming from the ZS′ graph
which were omitted in reference [8]. Introducing the spin
symmetric (AQ,Ω) and antisymmetric (BQ,Ω) parts as in
equation (10), and using

2N(0)ΓQ,Ωt (l) = AQ,Ω(l) +BQ,Ω(l) ,

2N(0)ΓQ,Ωs (l) = AQ,Ω(l)− 3BQ,Ω(l) , (32)

the RG equations take the simple form

dAQl
dt

=
dAΩl
dt
−

βR

cosh2(βR)
AQl

2
,

dBQl
dt

=
dBΩl
dt
−

βR

cosh2(βR)
BQl

2
. (33)

The two preceding equations are exact at one-loop order.
In order to solve them approximately in the low tempera-
ture limit, we will take advantage of the singularities which
arise in the RG flow. We integrate equations (33) between
0 and t to obtain (writing explicitly the t dependence)

AQl (t) = AΩl (t)−

∫ t

0

dt′
βR

cosh2(βR)
AQl (t′)2 (34)

and a similar equation for BQl (t). Here we have used

AQl (t = 0) = AΩl (t = 0) since Γσi(t = 0) = Uσi is a non-
singular function of its arguments as was justified above
when T � vFΛ0. Iterating (34), we obtain

AQl (t) = AΩl (t)−

∫ t

0

dt′
βR

cosh2(βR)
AΩl (t′)2 + ... (35)

We have shown above that ΓΩσi (θ) is a smooth func-
tion of Λ(t) except for small angles |θ| � T/vF . The
Fourier transform ΓΩσi (l) is then a smooth function of Λ(t)
(for l � EF /T ). At low temperature, we can therefore

make the approximation AΩl (t)|Λ(t)∼T/vF ' AΩl
∗

where

AΩl
∗

= AΩl |Λ(t)=0 is the fixed point (FP) value of AΩl .

Since the thermal factor βR/ cosh2(βR) is strongly peaked
for Λ(t′) . T/vF , we can replace AΩl (t′) in the rhs of (35)

by AΩl
∗
. For Λ(t) . T/vF , (35) then becomes

AQl (t) = AΩl
∗
−

∫ t

0

dt′
βR

cosh2(βR)
AQl (t′)2 . (36)
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The preceding equation shows that the ZS channel is now
decoupled from the other channels. As in the microscopic
FLT, this property follows from the fact that the singular-
ity of the ZS channel is due to particle-hole pairs close to
the Fermi surface (Λ(t) . T/vF ). Equation (36) is solved
by introducing the parameter τ = tanhβR, which leads to

AQl (τ) =
AΩl
∗

1 + (τ0 − τ)AΩl
∗ ,

BQl (τ) =
BΩl
∗

1 + (τ0 − τ)BΩl
∗ , (37)

for Λ(t) . T/vF . τ0 = tanh(βvFΛ0/2) ' 1 for T � vFΛ0.
Equations (37) show that the marginality of the coupling

functions is lost at one loop-order. AQl and BQl are ei-
ther relevant or irrelevant depending on their sign. For
AΩl
∗
< −1 (BΩl

∗
< −1), AQl (BQl ) diverges for some value

of τ which signals an instability of the Fermi liquid. For
instance, if BΩ0

∗
< −1, the Fermi liquid is unstable with

respect to a ferromagnetic phase (in (11), one should re-
place 2l+1 by 1 for a two-dimensional system). The stabil-

ity conditions AΩl
∗
> −1 and BΩl

∗
> −1 are known as the

Pomeranchuk’s stability conditions [21]. The FP values of

AQl and BQl are obtained for τ = 0 (Λ(τ = 0) = 0):

AQl
∗

=
AΩl
∗

1 +AΩl
∗ ; BQl

∗
=

BΩl
∗

1 +BΩl
∗ · (38)

Here and in the following we put τ0 = 1.
The RG at one-loop order therefore agrees with the

microscopic FLT (Eq. (11) with 2l + 1 replaced by 1).

Equation (36) (together with the analog equation for BQl )
is nothing else but a Bethe-Salpeter equation in the ZS
channel for the vertex ΓQσi , with ΓΩ

∗
the irreducible two-

particle vertex function. This shows that the integration
of the RG equations generates the same diagrams as those
considered by Landau [2–4] (as shown in Sect. 5, Eq. (36)
holds at all orders in a loop expansion). From this point
of view, there is therefore a strict equivalence between the
RG approach and the microscopic FLT.

It has been claimed in reference [7] that the coupling
function Γσi cannot become singular because the integra-
tion of an infinitesimal momentum shell cannot produce
any non-analyticity. This argument is not correct since
non-analyticity can originate in the infinite sum over the
Matsubara frequencies. In this section, we have obtained
a non-analyticity summing the product G(K̃)G(K̃ + Q̃)
over ω. Because of this non-analyticity, one should keep
in the action all coupling functions Γ (θ1, θ2; Q̃) whatever

the value of Q̃ (with Q . Λ(t)). To illustrate this point,
consider a marginal variable (call it g) which is a function

of Q̃. Since g is marginal, it is tempting to neglect its de-
pendence on Q̃ arguing it is irrelevant. This latter point
is usually proved by considering the Taylor expansion of
g(Q̃):

g(Q̃) = g00 + g10Q+ g01Ω + g11QΩ + · · · (39)

A dimensional analysis shows that g00 is marginal and
all other coefficients irrelevant, so that only g00 has to be
kept in the action. This argument is correct only if g is
a regular function at Q̃ = 0. Otherwise, it has no Taylor
expansion around Q̃ = 0 and there is no way to control
the marginality or irrelevance of the dependence on Q̃.

The importance of keeping the full dependence of
Γ (θ1, θ2; Q̃) on Q̃ can be understood from a more physical
argument. A neutral Fermi liquid with short range inter-
action can sustain a collective charge (or spin) density os-
cillation with an excitation energy vanishing in the limit
of long-wave length (as shown by Mermin [20], there ex-
ists at least one such mode). This collective mode strongly

affects Γ ∗(θ1, θ2; Q̃) since it yields a pole at Ω = c0Q (c0
is the velocity of the zero-sound or spin-waves mode) in
the retarded two-particle vertex function obtained by an-
alytical continuation iΩ → Ω + i0+ (see Sect. 3.2). This

shows that the dependence on Q̃ cannot be irrelevant.

3.2 RG equations for Γσi(θ1, θ2; Q̃): collective modes

RG equations for Γσi(θ1, θ2; Q̃) with Q̃ 6= 0 are a priori
difficult to obtain, since in general the one-loop graphs
vanish when Q 6= 0. For example, it is not possible to
have both K and K + Q in the infinitesimal momentum
shell to be integrated out when Q 6= 0 (except for very
rare configurations) so that the ZS graph vanishes. The
same kind of problem arises in the calculation of the ZS′

graph even when Q̃ → 0 (see preceding section). As dis-
cussed in Section 4, a one-loop calculation should involve
the consideration of three-body interactions. In this sec-
tion, we restrict ourselves to the case of finite but small Q̃.
We adopt the approximate procedure used in Section 3.1
for the calculation of the ZS′ graph: we impose on K to be
in the infinitesimal momentum shell to be integrated out
but relax the analog condition for K+Q. As shown below,
this approximate procedure is sufficient (and correct) to

obtain the long wave-length limit of Γσi(θ1, θ2; Q̃).
According to Section 3.1, the ZS′ graph does not pro-

duce any singularity when Q̃ → 0. We can safely put
Q̃ = 0 in the contribution of this graph to Γ . The de-
pendence on Q̃ of the ZS graph is given by (22). The RG
equation (29) then becomes:

dΓσi(θ1, θ2; Q̃)

dt
=
dΓΩσi (θ1 − θ2)

dt

+
N(0)βR

cosh2(βR)

∫
dθ

2π
g(θ, Q̃)

×
∑
σ,σ′

Γσ1σ′,σσ4(θ1, θ; Q̃)Γσσ2,σ3σ′(θ, θ2; Q̃) , (40)

where g(θ, Q̃) = vF K̂ · Q/(iΩ − vF K̂ · Q) and K̂ =
(cos θ, sin θ). ΓΩσi(θ1 − θ2) is a smooth function of Λ(t) ex-
cept for |θ1−θ2| � T/EF . If we are interested in quantities
(like the collective modes) which involve all the values of
θ1 − θ2, we can consider ΓΩ as a smooth function. It is
then possible to proceed as in Section 3.1 to solve (40).
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We introduce the quantities A(θ1, θ2; Q̃) and B(θ1, θ2; Q̃)
by analogy with (32). Equation (40) becomes

dA(θ1, θ2; Q̃)

dt
=
dAΩ(θ1 − θ2)

dt

+
βR

cosh2(βR)

∫
dθ

2π
g(θ, Q̃)A(θ1, θ; Q̃)A(θ, θ2; Q̃) ,

dB(θ1, θ2; Q̃)

dt
=
dBΩ(θ1 − θ2)

dt

+
βR

cosh2(βR)

∫
dθ

2π
g(θ, Q̃)B(θ1, θ; Q̃)B(θ, θ2; Q̃) . (41)

Integrating this equation, and taking advantage of the
singularity of βR/ cosh2(βR) when T → 0, we obtain for
Λ(t) . T/vF

A(θ1, θ2; Q̃) = AΩ
∗
(θ1 − θ2)−

∫
dθ

2π
g(θ, Q̃)

×

∫ τ

1

dτ ′A(θ1, θ; Q̃)A(θ, θ2; Q̃), (42)

and a similar equation for B. If we iterate this equation,
we obtain:

A(θ1, θ2; Q̃) = AΩ
∗
(θ1 − θ2)

+ (1− τ)

∫
dθ

2π
g(θ, Q̃)AΩ

∗
(θ1 − θ)A

Ω∗(θ − θ2)

+ (1− τ)2

∫
dθ

2π
g(θ, Q̃)

∫
dθ′

2π
g(θ′, Q̃)AΩ

∗
(θ1 − θ)

×AΩ
∗
(θ − θ′)AΩ

∗
(θ′ − θ2) + · · · (43)

This expansion is clearly equivalent to the integral equa-
tion

A(θ1, θ2; Q̃) = AΩ
∗
(θ1 − θ2)

+ (1− τ)

∫
dθ

2π
g(θ, Q̃)AΩ

∗
(θ1 − θ)A(θ, θ2; Q̃) ,

B(θ1, θ2; Q̃) = BΩ
∗
(θ1 − θ2)

+ (1− τ)

∫
dθ

2π
g(θ, Q̃)BΩ

∗
(θ1 − θ)B(θ, θ2; Q̃) . (44)

At the fixed point (τ = 0), we recover the equations which
determine the two-particle vertex function in the micro-
scopic FLT (Eq. (4) evaluated for states on the Fermi
surface). In the above calculation, the dependence on

Q̃ follows from (22) which is correct only in the limit
Q → 0. It is clear that for finite Q, the singularity
(β/4) cosh−2(βvF k/2)|T→0 = δ(vF k) is weakened (only
the flow of ΓQ presents a singularity ∼ δ(Λ) for T → 0).

Consequently, the determination of Γ ∗σi(θ1, θ2; Q̃) is less
accurate at finite Q.

The spectrum of the collective modes is given by the
poles of A (zero-sound mode) and B (spin-waves mode)
after analytical continuation iΩ → Ω+ i0+. As in the mi-
croscopic FLT, we define the Landau parameters in such
a way that the results of the phenomenological approach

are reproduced. We therefore identify the Landau param-
eters with the FP values of AΩl and BΩl , F sl = AΩl

∗
and

F al = BΩl
∗
, or equivalently fσi(θ) = ΓΩσi

∗
(θ). Consider-

ing the fact that the ψ(∗)’s in (14) have been rescaled to
eliminate the wave-function renormalization factor zΛ0 , we
eventually come to the following definition of the Landau
function:

fσi(θ) = z2
Λ0
ΓΩσi
∗
(θ) , (45)

where ΓΩσi
∗
(θ) now refers to the bare fermions.

In the following, we will sometimes consider the simple
case where F s,al = 0 if l 6= 0. Equations (44) then yield

A(Q̃) =
F s0

1 + (1− τ)F s0Ω0(η)
,

B(Q̃) =
F a0

1 + (1− τ)F a0 Ω0(η)
, (46)

where η = iΩ/vFQ and

Ω0(x) =

∫
dθ

2π

cos θ

cos θ − x
· (47)

3.3 Density-density response function

We show in this section how the density-density response
function can be calculated in the KW RG approach. We
proceed as in reference [15]. We introduce a source term
in the action,

Sh = −
∑
Q̃

h(Q̃)ρ(−Q̃) , (48)

where the external field h(Q̃) = h∗(−Q̃) couples to the

particle density ρ(Q̃) = (βν)−1/2
∑
K̃,σ ψ

∗
σ(K̃)ψσ(K̃+ Q̃).

The density-density response function is determined by

χρρ(Q̃) = 〈ρ(Q̃)ρ(−Q̃)〉 =
δ(2) lnZ[h]

δh∗(Q̃)δh(Q̃)

∣∣∣∣∣
h=0

, (49)

where Z[h] is the partition function in presence of the
source term. The RG process generates correction to the
source field h along with higher order terms in the source
field. At step t, the total action can be written as

SΛ(t) −
∑
Q̃

zh(Q̃)h(Q̃)ρ(−Q̃)

−
∑
Q̃

h∗(Q̃)h(Q̃)χ(Q̃) +O(h3) , (50)

where SΛ(t) is the action at step t without the external

field h. zh(Q̃) and χ(Q̃) are both t-dependent quantities.
From (49), we deduce that χρρ is the FP value of χ, i.e.
χρρ = χ∗. We consider the case where only the Landau
parameters F s0 and F a0 are non zero. Γσi , A and B are

then functions of Q̃ only and are given by (46).
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χd =

(b)

= +

t+dt t

(a)

Fig. 2. (a) Diagrammatic representation of the renormaliza-
tion of the external field h at one-loop order. The wavy line
with the black dot represents the renormalized external field
zhh. The slashed particle lines indicate momenta in the in-
finitesimal shell Λ(t)e−dt ≤ |k| ≤ Λ(t). (b) Diagrammatic rep-
resentation of the renormalization of χ at one-loop order.

The renormalization at one-loop order of zh (see
Fig. 2a) is given by

dzh(Q̃) = zh(Q̃)
T

ν

′∑
K̃

G(K̃)G(K̃ + Q̃)
∑
σ′

Γσσ′,σ′σ(Q̃) ,

(51)

where
∑′

means that the sum is restricted to the de-
grees of freedom which are in the infinitesimal momentum
shell. As in Section 3.2, we impose on K to be in the in-
finitesimal shell to be integrated out and let K + Q free
(and consider only the case of small Q). Using (22) and∑
σ′ Γσσ′,σ′σ(Q̃) = A(Q̃)/N(0), we obtain

d ln zh(Q̃)

dt
= −

βR

cosh2(βR)
Ω0(η)A(Q̃). (52)

As expected, the renormalization of zh involves only the
charge part (A) of the interaction. Because of the thermal
factor βR/ cosh2(βR) (which becomes significantly differ-
ent from zero only when Λ(t) . T/vF ), we only need

to know the expression of A(Q̃) for Λ(t) . T/vF . Using

zh(Q̃)|τ=1 = 1 and (46), we obtain

zh(Q̃) =
1

1 + (1− τ)F s0Ω0(η)
· (53)

The generation of the term of order O(h2) is shown in
Figure 2b. The RG equation for χ is given by

dχ(Q̃) = −
T

ν

′∑
K̃,σ

G(K̃)G(K̃ + Q̃)z2
h(Q̃) (54)

= 2N(0)
βR

cosh2(βR)
Ω0(η)z2

h(Q̃)dt . (55)

Again the factor βR/ cosh2(βR) allows us to use the ex-

pression of zh(Q̃) for Λ(t) . T/vF (Eq. (53)). We obtain

χ(Q̃) = 2N(0)
Ω0(η)(1− τ)

1 + (1− τ)F s0Ω0(η)
, (56)

using χ(Q̃)|τ=1 = 0, which holds when T � vFΛ0, since

the external field h(Q̃) couples only to states which are
within the thermal broadening of the Fermi surface. At
the FP (τ = 0), we recover the standard expression of the
density-density response function in the simple case we
are considering (F s,al = 0 if l 6= 0). From (56), we deduce
the compressibility of the Fermi liquid:

κ∗ = lim
Q→0

[
χ∗(Q̃)

∣∣∣
Ω=0

]
=

2N(0)

1 + F s0
, (57)

a result which holds whatever the values of the Landau
parameters (i.e. κ∗ is determined by F s0 only). The Pauli
susceptibility can be obtained in a similar way by intro-
ducing an external magnetic field which couples to the
spin density.

3.4 Zero-temperature limit

We discuss in this section the zero-temperature limit of
the RG equations. For simplicity, we only consider the
contribution of the ZS graph to ΓQ. This contribution
can be written as

dAQl
dt

∣∣∣∣∣
ZS

= −
βR

cosh2(βR)
AQl

2
, (58)

where βR = vFβ(t)Λ0/2 with Λ0 the cut-off (which
is kept fixed through the rescaling procedure) and
β(t) = βe−t the effective temperature at step t. Using
limβ→∞ βR/ cosh2(βR) = 2Λ0δ(Λ0), we obtain in the zero
temperature limit

dAQl
dt

∣∣∣∣∣
ZS

= −2Λ0δ(Λ0)AQl
2

= 0 (59)

for any finite value of the cut-off Λ0. One can also ob-
tain the preceding equation by taking the limit T → 0
from the very beginning of the calculation (i.e. in Eq.
(14)). Equation (59) disagrees with the preceding sections
where the limit T → 0 was taken only at the end of the
calculation. The origin of this disagreement can be un-
derstood as follows. The ZS graph describes processes
where the two incoming particles exchange a particle-hole
pair at zero total momentum and energy. Assume that
the particle and the hole of this pair have momenta cor-
responding to the same (band) energy ε. Because of the
rescaling of the momenta, |ε| increases (ε′ = edtε at each
step of the renormalization). When it reaches the value

|ε| = Λ0, we obtain a finite contribution to dAQl /dt|ZS .
At finite temperature, the particle and the hole of the ex-
changed pair have energies within the thermal broadening
of the Fermi surface (|ε| . T ). However, at T = 0, the
particle-hole pair has to lie exactly on the Fermi surface
(ε = 0). Under rescaling of the energies (ε′ = edtε), ε = 0
remains unchanged and never reaches the value |ε| = Λ0.

Hence the absence of flow for AQl in the ZS channel. This
unphysical result (first pointed out by Chitov and
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Sénéchal [8]) follows from the rescaling procedure keep-
ing the cut-off Λ0 fixed which amounts to integrating all
the degrees of freedom except those on the Fermi surface.
While this procedure is in general perfectly valid, it fails
at T = 0 due to the somehow pathological behavior of the
ZS channel. A natural way to avoid these difficulties is to
use a finite temperature formalism taking the limit T → 0
only at the end of the calculations [8]. Alternatively, one

can determine Γ (θ1, θ2; Q̃) for small but finite Q̃ taking

the limit Q̃ at the end of the calculation (a finite Q en-
sures that the particle and the hole are not on the Fermi
surface. Under the rescaling procedure, their energies will
therefore become of the order of Λ0). Another possibility
would be not to follow the rescaling procedure and to de-
rive RG equations as a function of the effective cut-off Λ.
Equation (58) is then replaced by

dAQl
dΛ

∣∣∣∣∣
ZS

=
vFβ/2

cosh2(vFβΛ/2)
AQl

2
→(T→0) 2δ(Λ)AQl

2
,

(60)

which allows to integrate all the degrees of freedom since
the cut-off can reach the value Λ = 0.

4 A few remarks

In this section, we discuss in detail some points which were
only briefly mentioned in Section 3.

4.1 Content of the low-energy effective action

We first consider the problem which arises in the calcu-
lation of the ZS′ graph. When Q → 0, the ZS′ graph
vanishes unless K2 − K1 → 0 since both internal lines
should have their momenta in the infinitesimal shell near
the cut-off. We therefore obtain a discontinuous contribu-
tion in the forward direction (K2 = K1). For the same rea-
son, when K2 = K1, we obtain a discontinuity at Q = 0
when one varies Q. The same problem arises in the cal-
culation of the ZS graph considered as a function of Q.
These discontinuities are clearly unphysical.

Consider the one-loop diagrams of Figure 1. All the
internal momenta should be in the infinitesimal shell
Λ(t)e−dt ≤ |k| ≤ Λ(t) which has to be integrated out.
We therefore consider only the intermediate states where
the particle and the hole (or both particles in the case
of the BCS graph) have the same energies (in absolute
value, i.e. |ε1| = |ε2|). If, in the KW RG method, we con-
sider only these diagrams, we do not take into account
processes where the particle and the hole in the interme-
diate state do not have the same energy. This reduction
of the Hilbert space results in unphysical discontinuities.
These discontinuities are suppressed if one includes in the
action three-body interactions [24].

By iterating “by hand” the RG equations, one can
identify the diagrams which are effectively considered via
the RG approach. For instance, a one-loop RG calculation

in the ZS channel (ignoring the ZS′ and BCS channels)
amounts to suming the series of bubble diagrams in this
channel. In the following we explicitly identify some of
the diagrams generated by the RG equations to prove the
importance of three-body interactions.

Consider the action S = S0 + S4 + S6 where the
quadratic and quartic parts, S0 and S4, are given by (14)
(where we now note U (4) the coupling function of the two-
body interaction). S6 is a three-body interaction given by

S6 =
1

(3!)2

T 2

ν2

∑
K̃1...K̃6

U (6)(K̃i)ψ
∗(K̃6)ψ∗(K̃5)ψ∗(K̃4)

× ψ(K̃3)ψ(K̃2)ψ(K̃1)δ1+2+3,4+5+6 , (61)

where we do not consider the spin dependence which
is of no importance for our discussion. The function
δ1+2+3,4+5+6 ensures the conservation of momentum and

energy and U (6)(K̃i) ≡ U (6)(K̃1, ..., K̃6). All wave-vectors
satisfy 0 ≤ |k| ≤ Λ0. If we reduce the cut-off, Λ′0 = Λ0/s
(s > 1), and rescale radial momenta, frequencies and fields
in the usual way (k′ = sk, ω′ = sω, ψ′ = ψ) to keep

the quadratic action S0 invariant, we obtain U (4)′ = U (4)

and U (6)′ = U (6)/s. One usually concludes that U (4) is
marginal and U (6) is irrelevant, so that this latter can be
neglected in the small U (6) limit. This conclusion is not
correct if U (6) is not an analytic function of its arguments.
This is precisely the situation we have to consider. The
RG generates a three-body interaction which is a singular
function of its arguments and turns out to be marginal.
To lowest order, a three-body interaction is generated via
the process shown in Figure 3a. In this figure, the slashed
lines indicate degrees of freedom in the infinitesimal shell
Λ(t)e−dt ≤ |k| ≤ Λ(t) which have to be integrated out.
The other particle lines are all assumed to be below the
infinitesimal momentum shell (|k| < Λ(t)e−dt). The corre-
sponding contribution to S6 is of the type (ignoring sign
and multiplicative factors)

U (4)(K̃2, K̃3, K̃2 + K̃3 − K̃6, K̃6; t236̄)

× U (4)(K̃1, K̃5 + K̃4 − K̃1, K̃4, K̃5; t236̄)

×G(K̃2 + K̃3 − K̃6)

× ψ∗(K̃6)ψ∗(K̃5)ψ∗(K̃4)ψ(K̃3)ψ(K̃2)ψ(K̃1) , (62)

where t236̄ is defined by vFΛ(t236̄) = |ε(K2 + K3 −K6)|.
Because of the Green’s function G(K̃2+K̃3−K̃6) = (iω2+
iω3−iω6−ε(K2+K3−K6))−1, this contribution is singular

when ε, ω → 0. In a dimensional analysis,G(K̃2+K̃3−K̃6)
yields an additional factor s so that the contribution (62)
to S6 is marginal and not irrelevant. Imagine that, once
the contribution (62) has been generated, one continues
the renormalization process by decreasing the cut-off be-
low Λ(t236̄). If two (one incoming and one outgoing) of the
six external lines of the six-leg diagram of Figure 3a have
the same momentum and energy, for example K̃3 = K̃4,
then for vFΛ(t) = |ε(K3)| = |ε(K4)|, this diagram gen-
erates a four-leg diagram as shown in Figure 3b, assum-
ing that the other four external legs are below the cut-off
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Fig. 3. (a) Generation of a six-leg diagram from four-leg di-
agrams. (b) Generation of a four-leg diagram from a six-leg
diagram. The slashed particle lines indicate momenta in the
infinitesimal shell Λ(t)e−dt ≤ |k| ≤ Λ(t)

(when the cut-off is between |ε(K3)|/vF = |ε(K4)|/vF and
Λ(t236̄), the contribution (62) to S6 does not renormalize).
We therefore obtain a contribution to S4 of the type

U (4)(K̃2, K̃3, K̃2 + K̃3 − K̃6, K̃6; t236̄)

× U (4)(K̃1, K̃5 + K̃4 − K̃1, K̃4, K̃5; t236̄)

×G(K̃2 + K̃3 − K̃6)

×G(K̃3)ψ∗(K̃6)ψ∗(K̃5)ψ(K̃2)ψ(K̃1) . (63)

The important point is that |ε(K3)| 6= |ε(K2 +K3−K6)|.
Thus, via the three-body interaction, we have generated
the “missing” processes where the particle and the hole in
the intermediate state do not have the same energy. This
shows that it is necessary to consider three-body interac-
tions to generate all the one-loop diagrams in the KW RG
approach. The calculation of one-loop diagrams generated
from six-leg vertices would be in practice very difficult.
The reason is that, in the above example (Fig. 3), the
contribution to U (4) at Λ(t) = |ε(K3)| = |ε(K4)| involves
U (4)(t236̄) where t236̄ < t (i.e. Λ(t236̄) > Λ(t)). Therefore,
dU (4)(t)/dt is not a function of t only but depends also
on t′ < t: U (4)(t) is determined by an integro-differential
equation. Nevertheless, if |ε(K3)| ' |ε(K2 +K3−K6)|, we
have Λ(t236̄) ' Λ(t) and we can make the approximation
U (4)(t236̄) = U (4)(t). dU (4)(t)/dt is then entirely deter-
mined by U (4)(t). In other words, we have approximated
the integro-differential equation which determines U (4)(t)
by a differential equation. It is clear that this approxima-
tion amounts to calculating dU (4)(t)/dt directly from the

one-loop diagram ∝ U (4)2
(i.e. without considering U (6))

imposing K3 to be at the cut-off and relaxing the ana-
log constraint for K2 + K3 −K6. This is precisely what
we have done in Section 3 to calculate the ZS′ graph for
KF

1 −KF
2 6= 0 or the ZS graph at finite Q̃.

In the same way, the RG generates eight-leg vertices
which, for the reason discussed above, are marginal. These
vertices generate in turn four-leg vertices. Figure 4 shows

(b)

+

+

(a)

Fig. 4. (a) generation of an eight-leg diagram from four-leg
diagrams. (b) generation of a four-leg diagram from an eight-
leg diagram.

how a two-loop diagram is generated in this way. This
two-loop diagram cannot be generated directly (i.e. from
the integration of only one infinitesimal momentum shell)
because of the constraints imposed by momentum conser-
vation (in the diagram of Fig. 4b, it is not possible to have
all the internal momenta in the shell to be integrated out).

n-body (n > 2) interactions are also generated by the
integration of high-energy degrees of freedom |ε| > E0

(E0 = vFΛ0 assuming a circular Fermi surface) which is
the necessary step to obtain the low-energy effective ac-
tion. We note Smicro(ψ

∗, ψ) the exact microscopic action.
ψ(∗) ≡ ψ(∗)(K, ω) where K belongs to the first Brillouin
zone (assuming for simplicity a single band). If we note

ψ
(∗)
> (ψ

(∗)
< ) the fields with |ε(K)| > E0 (|ε(K)| < E0),

then the low-energy effective action is defined by

e−S(ψ∗<,ψ<) =

∫
Dψ∗>Dψ>e

−Smicro(ψ
∗
>,ψ>;ψ∗<,ψ<) . (64)

This partial integration generates vertices at all order for

the ψ
(∗)
< ’s even if the microscopic action Smicro contains

only a two-body interaction [25]. As discussed above, some
of these n-body interactions are marginal due to a non
trivial dependence on the external variables. They should
therefore be retained in the low-energy effective action.
Physically, the role of these n-body interactions is clear.
For example, at one-loop order, the three-body interaction
is necessary to take into account processes where, in the
intermediate state, the particle is below the initial cut-off
(|ε| < E0) while the hole (or the other particle) is above
the initial cut-off (|ε| > E0).

4.2 Self-energy corrections

Until now, we have not considered the renormalization of
the one-particle propagator. The corresponding diagram
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Fig. 5. One-loop (a) and two-loop (b) diagrams for the self-
energy.

at one and two-loop orders are shown in Figure 5. The
two-loop diagram vanishes because it is not possible to
have all internal momenta in the shell to be integrated
out. This is also true for higher order diagrams. The only
diagram which does not vanish is the one-loop diagram.
In general, non-trivial self-energy corrections (finite life-
time and wave-function renormalization) originate in the

dependence of U (4) on Q̃. The integration of high-energy
degrees of freedom also generates a wave-function renor-
malization. However, it cannot induce a finite life-time for
states near the Fermi surface, since this effect comes from
real transitions occuring at low-energy. Since the depen-
dence of U (4) on Q̃ arises through the consideration of
three-, four-... n-body interactions, the inclusion of U (6),
U (8)... in the action is also very important for the calcu-
lation of the self-energy.

The role of n-body (n > 2) is then crucial in the KW
RG approach. They should be taken into account accord-
ing to the order to which the calculation is to be done.
For example, for a two-loop order calculation, one should
include in the action four-body interactions. In practice,
the KW RG method, as described here, would be very
difficult to apply. We have shown in Section 3 how a one-
loop order RG calculation can be (approximately) done
without considering three-body interactions (see also Ref.
[15]). Moreover, Bourbonnais and Caron have shown how
the KW RG approach can be modified to allow a two-loop
calculation [15]. Their method will be used in Section 6 to
obtain the quasi-particle life-time and the wave-function
renormalization factor.

4.3 Interference between channels

In the KW RG approach, the renormalization of the for-
ward scattering coupling function involves mainly the ZS
channel. As discussed above, the interference with the ZS′

channel requires the consideration of (at least) three-body
interactions. This holds also for the interference between
the ZS and BCS channels. This means that the inter-
ference between channels involves not only intermediate
states at a given energy (Λ(t)) but also intermediate states
at higher energy (|ε| > Λ(t)). In other words, the inter-
ference between channels is “frustrated”. This situation
is characteristic of a two-dimensional system with a cir-
cular Fermi surface and is at the basis of the validity of
FLT. It is also what justifies the use of a one-loop RG ap-
proach in the BCS channel only [7] (i.e. a ladder diagrams
summation (or RPA approximation) in the conventional

diagrammatic language) to study the BCS instability. For
more complicated Fermi surfaces, the interference between
channels may become important. An example would be a
two-dimensional conductor near half-filling where d-wave
superconductivity can be induced by the exchange of spin
fluctuations. (This Kohn-Luttinger effect [7,26] always ex-
ists but is expected to lead to extremely small critical tem-
perature in the case of a circular Fermi surface.) Another
example is given by one-dimensional conductors where the
different channels of correlation strongly interfere forbid-
ding any RPA-like calculations [14,15].

The consideration of the ZS′ channel in Section 3 was
motivated by symmetry considerations. For |θ1 − θ2| �
T/EF (θ1 − θ2 being the angle between the two incoming
particles), the interference between the ZS and ZS′ chan-
nel is not frustrated. This induces a particular behavior of
the two-particle vertex function around θ1 − θ2 = 0 and
ensures that ΓQ satisfies the Pauli principle [11].

It turns out that the frustration of the interference
between the ZS and BCS channels also disappears for
θ1 − θ2 ∼ π. For these values of θ1 − θ2, Γ (θ1, θ2; Q̃)
can be seen both as a forward scattering coupling func-
tion or as a BCS coupling function (Shankar’s V func-
tion [7]). We therefore expect a particular behavior of
Γ (θ1 − θ2 ∼ π). Such a behavior has been found for a
dilute Fermi gas (where a well-controlled low-density ex-
pansion can be made) in both three-dimensional [21,27]
and two-dimensional systems [28].

4.4 Field theory approach

We briefly discuss in this section the differences between
the KW approach (which is used in the rest of this pa-
per) and the FT approach. In the latter, one calculates
n-point vertices in a cut-off theory as a function of the
bare couplings. By requiring the renormalized vertices to
be independent of the cut-off, one obtains the evolution of
the bare vertices with the cut-off [7,29]. Consider for ex-
ample the renormalization of ΓQ. At one-loop order, the
renormalized two-particle vertex function can be written
as

ΓQ
∣∣∣
R

= ΓQ + δΓQ
∣∣∣
ZS,ZS′,BCS

, (65)

where δΓQ is the correction calculated with a cut-off
Λ(t) = Λ0e

−t. The dependence of ΓQ on t is then ob-
tained from the equation:

d

dt
ΓQ
∣∣∣
R

=
d

dt

(
ΓQ + δΓQ

∣∣∣
ZS,ZS′,BCS

)
= 0 . (66)

Consider now the ZS′ graph where the particle and the
hole in the intermediate state have energies ε1 and ε2 with
|ε1| 6= |ε2|. In the FT approach, this graph contributes to
the RG flow when max(|ε1|, |ε2|) = Λ(t). Thus, as pointed
out by Shankar [7], dΓQ/dt is given by the sum of all
graphs where one momentum is at the cut-off while the
others are below. While the KW and FT approaches are
clearly equivalent for the ZS graph for Q → 0 (since if
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one momentum of the particle-hole bubble is at the cut-
off, then momentum conservation ensures that the other
one is also at the cut-off), they in general differ. In the
FT approach, it is clear that there is no need to consider
three-, four- ... body interactions contrary to the KW ap-
proach. This also means that ΓQ(t) does not contain the
same information in the KW and FT approaches. In par-
ticular, the low-energy effective action (14) (defined for a
given cut-off Λ0) is not the same in both approaches. The
two-body interaction Uσi is different and the action con-
tains n-body interactions (n > 2) in the KW approach.
Notice that when one defines the low-energy effective ac-
tion by (64) (i.e. by integrating out (in a functional sense)
the high-energy degrees of freedom), one always uses (im-
plicitly) the KW approach.

An interesting aspect of the FT approach is that the
frustration of the interference between channels appears
very naturally since it always involves the small parame-
ter Λ/KF because of phase space restriction [7]. For in-
stance, the contribution of the ZS′ graph to the renormal-
ization of ΓQ is of order Λ/KF with respect to the one
of the ZS graph. We pointed out in Section 4.3 that the
interference between channels in a two-dimensional sys-
tem with a circular Fermi surface is mainly determined
by high-energy states. In the KW approach, its descrip-
tion requires the consideration of (at least) three-body in-
teractions. In the FT approach, processes involving both
low and high-energy states are integrated out in the early
stage of the renormalization procedure. The interference
left at low-energy is suppressed by the small parameter
Λ/KF . As discussed by several authors [7,9], this latter
property can be used to control the perturbation expan-
sion in a way similar to the 1/N expansion in statistical
mechanics.

5 Beyond one-loop

In Section 3, we used the singularity arising at low temper-
ature in the flow of Γσi(θ1, θ2; Q̃) for Λ(t) → 0 to recover
at one-loop order the results of the microscopic FLT. In
this section, we show that we can solve in the same way
the RG equations at all orders if we assume the existence
of well defined quasi-particles (near the Fermi surface) and
that the only singular contribution to the RG flow is due
to the one-loop ZS graph (as shown in Sect. 3, the contri-

bution of the ZS′ graph to the flow of Γσi(θ1, θ2; Q̃) can
be considered as regular if we are interested in quantities
which involve all the values of θ1−θ2). Let us stress again
that our aim is not to calculate FP quantities as a function
of the bare parameters of the action, but to relate physi-
cal quantities with ΓΩσi

∗
. In the following, the action is not

restricted to a two-body interaction (as in (14)), but con-
tains also three-, four-, ... n-body interactions which are
generated either by the RG process or the integration of
high-energy degrees of freedom (|ε| > vFΛ0) as discussed
in Section 4.

We first consider the renormalization of the one-
particle Green’s function G. We note z(t) the quasi-
particle renormalization factor (and assume z(t) > 0) and

write the Green’s function as G(K̃) = (iω − vF (t)k)−1

where the Fermi velocity vF (t) depends on the flow pa-
rameter t. This form, which assumes a proper rescaling of
the fields, will be justified below. The integration of the
degrees of freedom in the infinitesimal momentum shell
modifies the Green’s function:

G(K̃)−1
∣∣∣
t+dt

= iω − vF (t)k − dΣ(kω) , (67)

where the self-energy correction dΣ(kω) depends only on
k because of rotational invariance. We analyze the self-
energy following reference [7]. We Taylor expand dΣ(kω)
as follows:

dΣ(kω) = dΣ(00) + iω
∂dΣ(kω)

∂iω

∣∣∣∣∣
iω=k=0

+ k
∂dΣ(kω)

∂k

∣∣∣∣∣
iω=k=0

+ · · · , (68)

where the dots denote irrelevant terms at tree-level. In the
following, we neglect any effect associated with a finite life-
time of the quasi-particles, i.e. we assume that dΣ(00),
∂dΣ(kω)/∂iω|iω=k=0, and ∂dΣ(kω)/∂k|iω=k=0 are real.
This is justified when the scattering rate is much smaller
than ω ∼ T . In a two-dimensional Fermi liquid, this latter
is known to be of order T 2 lnT (see Sect. 6) and can be
neglected at low temperature. Ignoring irrelevant terms
and dΣ(00), which corresponds to a non essential shift of
the chemical potential, we write the Green’s function as

G(K̃)−1
∣∣∣
t+dt

= iωz−1(dt) − vF (t)kz−1
m (dt) , (69)

where

z−1(dt) = 1−
∂dΣ(kω)

∂iω

∣∣∣∣∣
iω=k=0

,

z−1
m (dt) = 1 +

1

vF (t)

∂dΣ(kω)

∂k

∣∣∣∣∣
iω=k=0

= 1 +
m(t)

KF

∂dΣ(kω)

∂k

∣∣∣∣∣
iω=k=0

. (70)

We have introduced the effective mass m(t) = KF /vF (t).
Since the coefficients of iω and k are modified by different
parameters, no rescaling will keep the quadratic part of
the action invariant. If one chooses to rescale the fields
to keep the coefficient of iω fixed at unity, i.e. ψ(∗)′ =
[z(dt)]−

1
2ψ(∗), we obtain

G(K̃)−1
∣∣∣
t+dt

= iω − vF (t)kz−1
m (dt)z(dt) . (71)

The preceding equation shows that the quasi-particle form
of the one-particle propagator, G(K̃) = (iω − vF (t)k)−1,
is conserved if one ignores irrelevant terms and finite life-
time effects. The condition z(t) > 0 then ensures the
existence of well-defined quasi-particles. The rescaling of
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the fields modify the wave-function renormalization factor
which becomes

z(t+ dt) = z(dt)z(t) . (72)

Moreover, from (71) one obtains the following RG equa-
tion for the Fermi velocity:

vF (t+ dt) = z(dt)z−1
m (dt)vF (t) , (73)

or, equivalently,

m(t+ dt) = z−1(dt)zm(dt)m(t) . (74)

We now consider the renormalization of the two-particle
vertex function ΓQ (the renormalization of Γ (θ1, θ2; Q̃)
is discussed below). We make the assumption that all
graphs, except the one-loop ZS graph, are well-behaved
for Q̃→ 0 and give a smooth contribution (with respect to

Λ(t)) to the RG flow of Γσi (θ1, θ2; Q̃). Note that the same
kind of assumption is made in the microscopic FLT. The
RG flows of ΓQ and ΓΩ are then determined by (before
the rescaling of the fields)

dΓQσi
dt

=
dΓQσi
dt

∣∣∣∣∣
ZS

+
dΓQσi
dt

∣∣∣∣∣
ZS′,BCS,2 loops...

(75)

dΓΩσi
dt

=
dΓΩσi
dt

∣∣∣∣∣
ZS′,BCS,2 loops...

=
dΓQσi
dt

∣∣∣∣∣
ZS′,BCS,2 loops...

(76)

The contribution of the one-loop ZS graph (first term of
the rhs of (75)), which gives the only singular contribu-
tion to the flow of ΓQ, has been separated from the non-
singular contributions. Equations (75, 76) can be com-
bined to obtain

dΓQσi
dt

=
dΓΩσi
dt

+
dΓQσi
dt

∣∣∣∣∣
ZS

. (77)

According to our assumption, ΓΩσi is a non-singular func-
tion of Λ(t) since it does not receive any contribution from
the one-loop ZS graph (see Sect. 3.1). Using the results
of Section 3.1, we have

dΓQσi(l)

dt

∣∣∣∣∣
ZS

= −
N(0)βR

cosh2(βR)

∑
σ,σ′

ΓQσ1σ′,σσ4
(l)ΓQσσ2,σ3σ′

(l) ,

(78)

where N(0) = KF/2πvF (t) and βR = vF (t)βΛ(t)/2 since

the one-particle Green’s function has the form G(K̃) =
(iω−vF (t)k)−1. Equations (77) can be written in the com-
pact form

ΓQσi(l, t+ dt) = z(Γ )
σi

(l, dt)ΓQσi (l, t) . (79)

After the rescaling of the fields, ψ(∗)′ = [z(dt)]−
1
2ψ(∗), we

obtain the RG equation

ΓQσi(l, t+ dt) = z(dt)2z(Γ )
σi (l, dt)ΓQσi(l, t) . (80)

The RG equations at all orders are given by (72, 73,
80) which (together with the assumption that ΓΩ is a
smooth function of Λ(t)) constitute the basis of FLT in
the RG language. z(t) and vF (t) are determined by the

dependence of Γ on Q̃ through the self-energy dΣ(kω).
Since the singularity in the flow of Γ is weakened at fi-
nite Q̃ (only the flow of ΓQ presents a singularity ∼ δ(Λ)
for T → 0), z(t) and vF (t) are smooth functions of the
cut-off Λ(t). At low temperature and for Λ(t) . T/vF ,
they can therefore be approximated by their FP values:
z(t)|Λ(t)∼T/vF ' z∗ and vF (t)|Λ(t)∼T/vF ' v∗F . Conse-
quently, we have z(dt) = zm(dt) ' 1 for Λ(t) . T/vF .
Since the contribution of the ZS graph becomes signifi-
cantly different from zero only when Λ(t) . T/vF , Equa-
tions (72, 73, 80) reduce to (77) with z(t) and vF (t) equal
to their FP values. Equation (77) is similar to (29) and can
be solved in the same way which leads again to (38). The

expression of ΓQ
∗

as a function of the Landau parameters
is recovered if these latter are defined by fσi(θ) = ΓΩσi

∗
(θ).

Since the ψ(∗)’s have been rescaled at each step of the
renormalization, we eventually come to

fσi(θ) = z∗
2
ΓΩσi
∗
(θ) , (81)

where ΓΩσi
∗
(θ) now refers to the bare fermions. Equation

(81) defines the Landau function in the RG approach.

The renormalization of Γσi(θ1, θ2; Q̃) can be discussed
in the same way. However, for finite Q, the resolution of
the RG equations becomes less accurate because the sin-
gularity (β/4) cosh−2(βvF k/2)|T→0 = δ(vF k) is weakened
(see Sect. 3.2). In particular, since z(t) and vF (t) depend

on Γσi(θ1, θ2; Q̃) for finite Q̃, the replacement z(t) → z∗

and vF (t) → v∗F in the RG equation for Γσi(θ1, θ2; Q̃)
is not exact any more. Equations (72, 73, 80) should be
considered together if they were to be solved exactly.
This would lead to complicated coupled equations for
Γσi(θ1, θ2; Q̃), z(t) and vF (t).

Thus, the relations between ΓΩ
∗

and physical quanti-
ties obtained at one-loop order (Sect. 3) are essentially un-
changed by higher order contributions although of course
the expression of ΓΩ

∗
as a function of the microscopic pa-

rameters is changed. (The only change is that the “bare”
quantities vF and zΛ0 are replaced by their FP values v∗F
and z∗.) This is a direct consequence of our assumption
according to which the only singular contribution to the
RG flow comes from the one-loop ZS graph.

6 Quasi-particle properties

In this section, we calculate the quasi-particle life-time
and renormalization factor. As discussed in Section 4, the
self-energy is obtained from the one-loop diagram (since
all higher order diagrams vanish). Thus, one possibility
to obtain the self-energy would be to introduce the ex-
pression of Γσi(θ1, θ2; Q̃) obtained in Section 3.2 in the
one-loop diagram. In practice, such a procedure turns out
to be very difficult. We follow in this section an alterna-
tive method introduced by Bourbonnais and Caron [15].
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These authors have shown how the KW RG approach can
be modified in order to easily obtain the two-loop correc-
tions and therefore the self-energy at this order. The main
idea is to make a distinction between band momenta and
transfer momenta. At each step of the renormalization,
one integrates the fermion field degrees of freedom corre-
sponding to a band momentum in the infinitesimal shell
Λ(t)e−dt ≤ |k| ≤ Λ(t) to be integrated out. No cut-off
is imposed on the transfer momenta which are let free.
In principle, it is necessary to impose an additional con-
straint on the transfer momenta in order to ensure that
every degree of freedom is integrated once and only once
(at a given order). In practice, one can ignore this con-
straint which is automatically taken into account through
the Fermi factors. The application of this method to one-
dimensional systems has been very successful since it has
allowed to recover the results of the multiplicative renor-
malization group approach [14].

We consider the simple case where only F s0 and F a0
are non zero. As discussed at the end of Section 5, the
calculation of quantities involving Γ (θ1, θ2; Q̃) with finite
Q requires to consider on the same footing the renormal-
ization of z(t) and vF (t). For simplicity, we assume that
all quantities can be calculated with the FP form of the
one-particle propagator, G(K̃) = (iω − v∗Fk)−1, ignoring
any finite life-time as can be justified at low tempera-
ture. Moreover, we do not take into account the effect

of the rescaling of the fields, ψ(∗)′ = [z(dt)]−
1
2ψ(∗), on the

RG equation of Γ (θ1, θ2; Q̃). These approximations are ex-
pected to be correct as long as one considers only small
transfer momentum Q in the diagram for the self-energy
(Fig. 5b). This can be achieved by introducing a cut-off
Qc for the transfer momenta. We can then use the results
of Sections 3.2 and 3.3 which hold in the limit of small Q.
The cut-off Qc is also introduced in the microscopic FLT
where the self-energy is usually obtained by dressing the
particle line with a charge or spin fluctuation propagator
with Q < Qc [30].

The self-energy correction is given by (Fig. 5b)

dΣ(kω) = −
T 2

2ν2

∑
Q̃

′∑
K̃′

∑
σ1σ2σ3

G(K̃ + Q̃)

×G(K̃ ′)G(K̃ ′ − Q̃)Γσσ1,σ2σ3(Q̃)Γσ3σ2,σ1σ(Q̃)

= −
1

4N2(0)

T 2

ν2

∑
Q̃

′∑
K̃′

G(K̃ + Q̃)G(K̃ ′)

×G(K̃ ′ − Q̃)
(
A2(Q̃) + 3B2(Q̃)

)
, (82)

where Γ (Q̃), A(Q̃) and B(Q̃) are given by (46). In the
above equation, the sum over the transfer momentum Q
is free (with Q < Qc) while the sum over the band mo-
mentum K′ is restricted to Λ(t)e−dt ≤ |k′| ≤ Λ(t). In the
following we consider only the charge part of the interac-
tion (i.e. we put B = 0). dΣ(kω) can be expressed as a
function of the density-density response function obtained

in Section 3.3. Using (46, 53, 54), we have

dχ(Q̃) = −2
T

ν

′∑
K̃′

G(K̃ ′)G(K̃ ′ + Q̃)
A2(Q̃)

F s0
2 . (83)

We therefore obtain

dΣ(kω) =
T

2ν

∑
Q̃

G(K̃ + Q̃)fs0
2dχ(Q̃) , (84)

where fs0 = F s0 /2N(0). Integrating this equation, we ob-
tain the FP value of the self-energy:

Σ∗(kω) =
T

2ν

∑
Q̃

G(K̃ + Q̃)fs0
2χ∗(Q̃) . (85)

The FP value χ∗(Q̃) of the density-density response func-
tion is determined by (56) [31]. Σ∗(kω) is the self-energy
one would obtain in perturbation theory by dressing
the particle line with one density fluctuation propagator
χ∗(Q̃). It is usually in this way that the quasi-particle
properties are calculated in the microscopic FLT [30].

The quasi-particle life-time is obtained from the re-
tarded part of the self-energy:

1

τ
∼ −Im

{
Σ∗(kω)

∣∣∣
iω→ω+i0+

}
. (86)

For states close to the Fermi surface (k, ω → 0), this
equation yields the standard result for a two-dimensional
Fermi liquid: τ−1 ∼ T 2 lnT [32,33,30]. Since τ−1 � T at
low temperature, the neglect of τ−1 in the single-particle
propagator G(K̃) during the renormalization is justified.

From (70,72), we obtain

d ln(z) = Re

[
∂dΣ(kω)

∂iω

∣∣∣∣∣
iω=k=0

]
, (87)

which yields

z∗ = zΛ0 exp

{
Re

[
∂Σ∗(kω)

∂iω

∣∣∣∣∣
iω=k=0

]}

= zΛ0 exp

{
−
T

2ν

∑
Q̃

fs0
2χ∗(Q̃)

(iΩ − v∗F K̂ ·Q)2

}
. (88)

The preceding equation agrees with the result obtained
from two-dimensional bosonization [34] or Ward Identities
[35]. In the case of short-range interactions, the exponen-
tial factor in (88) gives only a small correction to zΛ0 which
can be ignored for Λ0 � KF [34,35]. This ensures the ex-
istence of quasi-particles (z∗ > 0) for any non-vanishing
value of zΛ0 .

7 Conclusion

We have shown in this paper how FLT results can be de-
rived in a RG approach. While it seems difficult to calcu-
late physical quantities as a function of the bare parame-
ters of the low-energy effective action, it appears possible
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(and quite natural) to relate them to the FP value of the
Ω-limit of the two-particle vertex function which therefore
determines the Landau parameters. This result follows
from the assumption that the ZS graph is the only singu-
lar graph in the limit Q̃→ 0 and also the only one which is
dominated by the integration of low-energy states. These
assumptions seem reasonable in cases where the “quan-
tum” degrees of freedom (|ε| & T ) do not lead to any
instability (such as superconductivity or charge/spin den-
sity wave). As we pointed out, these two assumptions also
underlie the standard diagrammatic derivation of FLT.

I am indebted to C. Bourbonnais for many discussions which
have strongly contributed to my understanding of the RG
approach to interacting fermions. I thank G. Chitov for
many stimulating discussions and a critical reading of the
manuscript. Useful discussions with L. Hubert, H. Schulz, A.M.
Tremblay, V. Yakovenko and D. Zanchi are also gratefully ac-
knowledged.
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